H(t)=-16t^2+150t+1

Simple and best practice solution for H(t)=-16t^2+150t+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+150t+1 equation:



(H)=-16H^2+150H+1
We move all terms to the left:
(H)-(-16H^2+150H+1)=0
We get rid of parentheses
16H^2-150H+H-1=0
We add all the numbers together, and all the variables
16H^2-149H-1=0
a = 16; b = -149; c = -1;
Δ = b2-4ac
Δ = -1492-4·16·(-1)
Δ = 22265
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-149)-\sqrt{22265}}{2*16}=\frac{149-\sqrt{22265}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-149)+\sqrt{22265}}{2*16}=\frac{149+\sqrt{22265}}{32} $

See similar equations:

| -1/2x+5=1/3x+3 | | 1/2=-(2/3)x-(1/7) | | 6=7+n/9 | | 5(y+2)=2y+28 | | 7z-64=16z | | 5^3=125^4x-2 | | 7z-65=16z | | (9x+11)+(3x-15)+(2x+16)=180 | | -6(8x+8)=10x+8+8x+76 | | (9x+11+(3x-15)+(2x+16)=180 | | 58+4x+2x+2=180 | | 12t8t=-52 | | 2/3×y=24 | | 5(u-8)=2u-28 | | -2(7x-11)=92 | | 3y+28-6=4y+5 | | 3/5w-1/4=-1/3 | | a+3=5+4a | | 3y^2-6=19 | | 3y+28-6=4y+3 | | 6^(x+1)=4^(2x-1) | | −3x+9=x+25 | | -11(x+4)=-55 | | 1/3=w/(3,1/4) | | (2/5x)-3=4/3(4x-3) | | z+6/5=-8/3 | | 4/3x=3/4=1/2 | | 4x+5=+4x | | x=10^-5.4 | | 3.3x-26.4+x=1.2 | | 2(5x+4)-11=4x+6x-3 | | -8u+3(u+6)=13 |

Equations solver categories